CONSERVATIVE MARKOV PROCESSES ON
A TOPOLOGICAL SPACE

BY
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ABSTRACT

A Markov operator preserving C(X)is known to induce a decomposition of the
locally compact space X to conservative and dissipative parts. Two notions of
ergodicity are defined and the existence of subprocesses is studied. A sufficient
condition for the existence of a conservative subprocess is given, and then the
process is assumed to be conservative. When it has no subprocesses, sufficient
conditions for the existence of @ o-finite invariant measure are given, and are
extended to continuous-time processes. When the invariant measure is unique,
ratiolimit theorems are proved for the discrete and continuous time processes.
Examples show that some combinations of conservative processes are not nec-
essarily conservative.

1. Definitions and notations. Let X be a locally compact perfectly normal
space. We shall use the following properties of X:

(1.1) Every non-negative lower semi-continuous function is the limit-of an
increasing sequence of non-negative continuous functions. [7,1(2)].

(1.2) If {V,},e1 is a collection of open sets, then the open set 7 = |J,/V, can
be represented as the union of a countable subcollection {V, }. (Since V = \J B,
with B, closed and g-compact.)

(1.3) Every Borel set is a Baire set and consequently every Borel measure is
regular [8, p.228] o-finite (so every finite measure is regular).

We denote by X the collection of all Borel sets, by B(X,X) the Banach space
of all measurable bounded (real-valued) functions with the sup norm and by
C(X) the subspace of B(X,X) consisting of continuous functions.

A transition probability on (X,X) is a function

P: Xx ¥ >[0,1]
satisfying:

(1) This paper is a part of the authors’s Ph.D. thesis prepared at the Hebrew University under
the direction of Professor S. R. Foguel, to whom the author is grateful for his helpful advice
and kind encouragement.
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(l4) 0L P(x,A) =1 (xe X, AeX)
(1.5) P(x, .)is a measure (countably additive) for each fixed xe X .
(1.6) P(., A) e B(X,Z) foreachfixed Ae £ .

A transition probability P induces a positive contraction on B(X, X),defined by:

(L7) PAx) = [f(»)P(x.dy) (fe B(X,X)).

P also induces a positive contraction on the space of finite signed measures
M(X.,X), defined by:

(1.8) uP(4) = [P(x,A) u(dx) (pe M(X,X)).

We shall frequently denote [fdu by {u.f), and we have

(L9) (wP.fYi={uPfX(pe M(X.Z), fe B(X,E)).

In order to relate the transition probability to the topology, we assume
(1.10) fe C(X) = Pfe C(X).

P will be called a Markov process on X if it satisfied (1.4)-(1.10).

LEMMA 1.1. Let P be a Markov process on X ; then:

@) If {f,} £B(X.3) satisfies ||f,| < M for all n, and f,(x) - f(x) for every
xe X, then Pf(x)— Pf(x) for every xe X.

(b) Ifin(a) the convergence of f,(x) is non-decreasing, so is that of Pf,(x).

(¢) If0 £ fe B(X,X) is lower semi-continuous, so is Pf.

The proof is simple and will be omitted.

LemMmA 1.2. If P is a Markov process on X, then:

(a) For every 0 £ fe B(X,X) there is a minimal function f, satisfying
Pf, <f, and f=f, S |f].

(b) If 0 £ fe B(X,Y) is lower semi-continuous, so is f, .

The proof of (2) is given in chapter I of [6]. (b) follows from the construction
in [6] and lemma 1.1(c).

If Ae X and f = 1, we shall denote f,, by i,.

LemMA 1.3. (a) If A, 2 A, then i, }iy.
(b) If 0L fe B(X,X) satisfies Pf<f, then the set A=
{x:f(x) > 0} satisfies Pl, <1,.

(¢) Foreverym, P"i, < XX, P'1,.

PPrOOF. (a) {i,,} is increasing, so g = lim i, exists. Pg = P lim i, =lim Pi,
<limi, =gsoPg<g.gzsupiy =14,50i, =g by minimality. Since
iy, Sigqforeveryn,iy 2 g
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(b) Define 4, = {x:f(x) > 1/n} . Thenl/nl, = f,so iy, S nf,s0iz(x)=
0 for x outside A . Therefore, for such x, i(x) =limi,(x) = 0soiy =1,.

(c) By minimality, i, £ min {1, X2 P"1,}, so P"iy < min {I, X, P"1,}.

Q.E.D.
Lemma 1.4. If V is an open set and K is closed, then V N K is nowhere

dense if and only if it does not contain a non-empty open set.

ProoE. V NK =¥ N K, and if it contains an open set 4 # ¢, then
¢ #ANV < VNK. The converse is obvious. Note that by Baire’s theorem a
non-empty open set is of second category, so ¥V N K is either nowhere dense or
of second category.

2. Conservative Markov Processes.
DEFINITION 2.1. An inessential set is a set Ae T satisfying lim,_, , P"i (x) =

0 for every xe X . (Since Pi, < i,, {P"i} is a decreasing sequence, and the limit
always exists.)

DEerFINITION 2.2. The dissipative part of the process is the union of all inessential
open sets and will be denoted by D. The conservative part of the process is the
complementary set C = X — D. The process is conservative if D = ¢.

The following theorem was proved by Horowitz [9, theorem 2.27 .

THEOREM 2.1.  There exists a representation D = |J,2; D, Y N, where Nisa
set of first category and each D, is an open set satisfying X -, P*l;, € B(X, Z).

THEOREM 2.2. [If P is a Markov process on X , then the following conditions
are equivalent:

(a) P is conservative.

(b) For every lower semi-continuous 0 < g e B(X,¥) satisfying Pg < g,
the set {x: Pg(x) < g(x)} is a set of the first category.

(c) For every lower semi-continuous

0<geB(X,Z), the set {x:0 < X 2,P"g(x) < oo } is of the first category.
(d) For every open set U # ¢, the set U N {x: L 2L P"1y(x) < ) is of
the first category.
(e If0<ge B(X,X)islower semi-continuous and P'g |0, then g = 0.
Proor. (a) =(b) [9, theorem 2.6].
(b) =>(c)  [5, theorem 9].
() = (d) is obvious.
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(d) > (a): If D 7 ¢ then there is a non-empty D, in the representation of
the preceding theorem, since D is open and cannot be the first category. But
D, = {x:0< X Z,P p(x) < 0} which implies, by (d), that D, is of the
first category, a contradiction since D, is open and non empty. Hence D = ¢

(e) — (a) is immediate and (a) — (e) since {x: g(x) > 0} is open, and by (b) of
first category hence empty. Q.E.D.

THEOREM 2.3: The following conditions are equivalent:

(a) P is conservative.

(b) P* is conservative for every k.

© P* lis conservative Jor some k.

PRrOOF.

(a) > (b): Let 0 < geB(X,Z) be a lower semi-continuous function satis-
fying P*%¢ < g.

Define f=(I + P + - + P*"')g. Then 0 £ f ¢ B(X, X) is lower semi-
continuous, and f — Pf = g — P*g > 0. Since P is conservative, we have by
Theorem 2.2(b) that {x: Pf(x) < f(x)} = {x: P*g(x) < g(x)} is of the first category.
Again by Theorem 2.2, P* is conservative.

(b)=-(c) is obvious, and (c)=-(a) follows from Theorem 2.2(d), since for every
open set U

UnNn{x: T2P1y(x) < 0} € UnN{x: TE(PY1(x) < o0}

Q.E.D.
REMARK. In the sequel, we give an example that the product of two commut-

ting conservative Markov processes need not be conservative.
3. The conservative subprocess. We denote the complement for a set A by 4" .

Lemma 3.1. If P is a Markov process on X and Y # ¢ is a closed subset
satisfying P 1y, < 1y,, then Q: Y X (2 N Y) - [0,1], defined by Q(y,A)=P(y,A)
induces a Markov process on Y, and for every f € B(Y,Z NY) 0f(y) =
Pg(y) where g is any measurable extension of fto X .

ProOF. Y clearly satisfies all our topological assumptions and Q is obviously
a transition probability.

If g is any extension of f, then for ye Y (P(y,Y’) = 0):

Pe(y) = [e(2)P(nd2) = [4f(DP(r.d2) = 0f().

Q satisfies (1.10): If fe C(Y), it can be extended to a ge C(X) (Tietze's theo-
rem), and Pg is continuous, so @f is continuous on Y, Q.E.D.
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DerFmviTiON 3.1, A closed set Y with Ply. <1y is said to define a subprocess.
The subprocess on Y is the above Q.
LeMMA 3.2. A closed subset Y £ ¢ defines a subprocess if and only if for
every g and h in C(X) coincidingon Y, Pg = Phon Y.

Proor. The condition is obviously necessary. Y’ is open, and therefore 1,
is lower semi-continuous, and by (1.1) there isa sequence {f,} < C(X)with0< £, <1
and f, 1 1;.. Since f,=0on Y, Pf,=P0 =0 on Y, and by Lemma 1.1 for

yeyY
P ly(y) =lim Pf,(3)=0

or P 1y, £ 1y . Thus the condition is sufficient.

LemMa 3.3. If ¢ £ A S X, there is a minimal closed subset containing A

and defining a subprocess.
Proor. We define

F={Z: A< Z, Zisclosed, Pl, £1,}

F is not empty, since Xe F.
IfY  ZeF,thenA<YNZ, and

Pliyazy = Ply 7z S Ply. + Pl S 1y +1,.
If xe YNZ, Pliy,z(x) =0, therefore
Pliynay £ l(y~zy,andhenceY NZe F.

Define B= N{Z:Ze F}. B is closed and contains A. By (1.2) B can be
taken as the intersection of a sequence {Z,} < F. As F is closed under finite in-

tersections, we may take Z, decreasing to B.
Plg =1lim Pl <lim 1, =1,
by Lemma 1.1, so Be F, and is minimal, Q.E.D.
In [5] and [9] it is proved that the conservative part C of the process defines
a subprocess. (C is closed since D is open). It is not known if this subprocess

is conservative in general, but it is if C is the closure of its interior, as a corollary

of the following,

THEOREM 3.1.  Let C be the conservative part of the Markov process P on X .
Then there is a decomposition C = CoU C,. where C, is a nowhere dense set

and C, is a closed set containing int C and defining a conservative subprocess.
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Proor. If C has no interior put Cy= C and C; = ¢. Denote by V the in-
terior of C and assume V # ¢. Let C, be the minimal closed subset containing
V and defining a subprocess, which exists by Lemma 3.3, and is contained in C
by minimality. ¢, = C — C; € C — V is nowhere dense. It remains to show
that the subprocess defined by C; is conservative. We shall prove first that V is
contained in the conservative part of that subprocess. If this is not true then
there is a relatively openset A < C; with B=A NV # ¢ and P, [0 on C;
(note that the minimal function on C, majorizing 1, and subinvariant with re-
spect to the subprocess is the restriction of i,, defined in Lemma 1.2; this can
be seen immediately from the construction [6, chapter I1I]). Since A is relatively
open, A = WNC, with W open, and B=ANV =VNnWnNC,=VNW
is open, and satisfies P | 0 on C,, and especially Py | 0 on B. We now use
a trick of Foguel: define (in X) g = lim P*iz. By Lemma 1.1 Pg = g,and g = 0.
Wegot g =0o0nB,sol;<iyz—g, Plig—g) £ ip—g and by the minimality of
ig, 2 < 0. Hence g =0 on X, and by definition 2.2 B = D, contradicting
¢ # B < C, = C. Therefore V is contained in the conservative part C, of the
subprocess defined by C;. By minimality of C,; (C, also defines a subprocess)
C, =0C,. Q.E.D.

DerFINITION 3.1. The conservative subprocess of a Markov process P is the
minimal subprocess containing the interior of the conservative part of P; it is
conservative by the previous theorem.

ExamPLE 3.1. C, # ¥V

X = [0, 1] U {2} with the usual topology, P(x,4) = 1 (141) + 1,2)).
A simple checking shows that C = {1,2}. ¥ = V =i{2} but C; = C since
=Pl £1,.

EXAMPLE 3.2. ¢ # V' = C, # C.

X = [0,2] with the usual topology. Define T(x) = min {x%,x} and Pf(x) =
A(T(x)). (1/n,1) is open and inessential, and we can verify that C = {0} U [1,2];
but ¥ = C, = [1,2], by the next theorem.

THEOREM 3.2. If P is a Markov process on X with the property that
{x: Pf(x) # 0} is of the first category whenever {x: f(x) s 0} is such a set
(fe B(X, X)), then the conservative subprocess is defined by ¥ (the closure of
the interior of C).
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PrOOF. We have to show that V defines a subprocess, and we shall use
Lemma 3.2. Let g,he C(X) with g = h on /. We define § = gl and i = hi,.
{x:8(x) # h(x)} 1s contained in C — ¥V, which is of the first category. Hence
{x: Pg(x) # Ph(x)} is of the first category. Since g =g on C, Pg = P§ on C
(C defines a subprocess) and Ph = Ph on C. Therefore, {x: Pg(x) # Ph(x)} N C
is of the first category, and cannot contain a non-empty open set by Lemma 1.4
(open sets # ¢ are of the second category by Baire’s theorem), hence the open
set {x:Pg(x) # Ph(x)} NV = ¢. and therefore {x:Pg(x) # Ph(x)} NV = ¢,
or Pg = Ph on ¥ . The conclusion follows from Lemma 3.2. Q.E.D.

TueoreM 3.3.  Let P be a conservative Markov process on X . If Y is a closed
subset defining a subprocess, it can be decomposed as Y = A\UB, where A is
nowhere dense and B a closed subset containing the interior of Y and defining a
conservative subprocess.

The proof is completely identical with that of Theorem 3.1, and will not be re-

peated.

THEOREM 3.4: Let C be the conservative part of the Markov process on X,
then:
(a) For every lower semi-continuous 0 £ ge B(X,X) the set

{x:0< ZPg(x)<m}nNC

Is of first category.
(b) For every lower semi-continuous 0 £ ge B(X,Z) with

Pg < gonC,{x:Pg(x)< g(x)} NC
is of the first category.
ProoF. C = C,U C, by theorem 3.1: C, is of the first category, and on C,

we have a conservative process to which we apply Theorem 2.2, noting that sets
of first category in (', are such in X . Q.E.D.

4. Existence of subprocesses of a conservative process.
DerFmNiTION 4.1, A Markov process on X is ergodic if every non-empty closed
set defining a subprocess is either equal to X or nowhere dense (has no interior).

THEOREM 4.1. The following conditions are equivalent:
(a) P is conservative and ergodic.

(b) For every 0 £ ge B(X,X) not identically zero lower semi-continuous
Sfunction, {x: T F_oP"g(x) < oo} is of the first category.
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(c) For every non-empty open set U, {x: L5_oP"1y(x) < oo} is of the first
category.

(d) For every non-empty open set U, {x:Piy(x) < 1} is of the first category .

(e) For every 0 £ ge B(X,Z) lower semi-continuous function satisfying
Pg < g, {x: Pg(x) < “g)]} is of the first category.

ProoF. (a)=-(b): P is conservative, so {x: 0 < X ,2,P"¢(x) < oo} is of the
first category by Theorem 2.2(c). Define h = min {1, X ,P"g} then Ph < h.
A = {x: h(x) > 0} satisfies (Lemma 1.3) P1, < 1, and is open since h is lower
semi-continuous as soon as g is. Thus X — A is a closed set defining a subprocess,
and since 4 2 {x:g(x) > 0} # ¢, X — A has no interior by ergodicity, and
{x: X %oPg(x) = 0} is also of the first category.

(b) = (¢) is immediate.

(¢)=(d) P is conservative by Theorem 2.2(d).

By lemma 2.2 of [9] {x:iy(x) > 0} = {x: X ,P"1y(x)> 0} and hence (c)
implies {x: iy(x) = 0} is of the first category. {x: 0 < iy(x) < 1} is of the first cate-
gory for P conservative, by theorem 2.4 of [9]. Hence {x: iy(x) < 1} is of first
category. (d) follows by Theorem 2.2 (b).

(d) = (e): For g =0 it is true, so assume g=£ 0. 4, = {x:g(x) > ”g“ — rl;}
is not empty for large enough n.

g TSP g
Ly, = W , and by minimality i, < M——lﬁ

We have therefore
1._ 1
Piy, = (Hg“ . 71) 'Pg, and {x:Pg(x) < ngn - ’7} c {x:Pi,y (x) <1}

so the left-hand set is of first category by (d). Therefore {x: Pg(x)< H g”} is of the
first caregory as the union of a sequence of such sets.

(e)=(a): Let Y 5 X be a closed subset defining a subprocess.

Set U=X—17Y, then Ply 1y, so Y = {x:1y(x) <1} < {x: Ply(x)<1}
and both are of first category. Hence Y has no interior, and P is ergodic. Using
Theorem 2.2(b) P is easily seen to be conservative if (¢) holds.: Q.E.D.

DEFINITION 4.2. A Markov process on X is totally ergodic if every non-empty
closed set defining a subprocess is equal to X (there are no subprocesses).

LemMA 4.1. The following conditions are equivalent:
(a) P is totally ergodic.
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(b) For every non-empty open set U, {x:ig(x) > 0} = X.

(c) Forevery0 < f e C(X),iff £ Othen X7 oPY(x) > Ofor every xin X.

Proor. By lemma 2.2 of [9], {x:iy(x) > 0} = {x: X LoP"1,(x)>0}.IfU # ¢
is open, there is a non-zero fe C(X) satisfying 0 < f < 1y, and hence (¢) = (b).
If0<fe C(X)and f#0, U= {x:f(x) > a} is not empty for some a >0, and
aly £ 1, so (b)=(c).

(a)=(b): Let U s ¢ be open, and set V = {x:iy(x) > 0}. V is open and
by Lemma 1.3 P1, < 1,,s0 V' # X defines a subprocess, hence V' = ¢.

(b)=(a): If Y is a closed set defining a subprocess, Ply., < 1y, or 1y, = iy
and by (b) Y’ is ¢ or X ; so P is totally ergodic. Q.ED

Lemma 4.2. In the following conditions, (a) = (b) = (c).

(a) For every non-empty open set U, Piy, = 1.

(b) For every non-empty open set U, X7 oP"1, =

Il
8

(c) P is conservative and totally ergodic.

Proor. (a)=-(b): The condition also implies iy = 1 and P1 = 1. Thus we
have (by Lemma 1.3)

1 = PmlU(x) é Z;:0=mP"1U(X) (XG X)

for every m, so the series diverges.

(b)=(c): P is conservative by Theorem 2.2(d) and totally ergodic by the pre-
vious Lemma, since

{x:ig(x) > 0} = {x: X2 P"y(x) >0} =X

REMARKS.

1) If P is induced by a point transformation, iy is always O or 1,s0 (¢} = Pl =
iy #£ 0= Piy = 1= (a).

2) If there are no sets of first category (e.g. X countable with discrete topology,
(c) = (a).

3) S. Horowitz has shown the author a probabilistic proof that if X is compact
then (c)=(a).

4) TItis not known if always (c) =- (b) or (b) = (a).

5. Invariant (c-finite) measures and ratio limits

DerNiTioN 5.1, If u is a Borel measure (positive, and finite on compact set
o-finite by g-compactness of X), we define uP by means of (1.8). The measure y
is subinvariant if uP < u, and invariant if equality holds.
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For Markov processes defined on L,(X, T ,u) our reference is [6].

Lemma 5.1: If P is a Markov process on X and u is a subvariant Borel meas-
ure, then P defines a Markov process on L(X, % ,pn).

Proor. L,(X, X ,u) can be identified with a closed subspace of M(X,X), and
we have only to show that it is invariant under P. If 0 < m is a measure weaker
than g, then p(4) = 0 implies { p, P1,> = pP(A) = 0, hence u{x:P1,(x) > 0}
so m{x:Pl(x) > 0} = 0 and mP(4) =_{m,P1,>=0. Q.E.D.

DErNITION 5.2: We denote by Cy(X) the linear manifold in C(X) of continuous
functions with compact support.

THEOREM 5.1. Let P be a Markov process on X. If there is a function
0 < ge Co(X)satisfying 27-gP"%(x) = oo for every xe X, then there exists
an invariant Borel measure.

Proor. Take any 0 £ f e (Cy(X). Since f has a compact support and
> ® ,P'g = oo, there is an integer K such that X X P% > f, and hence for
every integer N TY_oP'f< X1, Li P"g < K EV_, P'g + K?|g].

We now take a finite measure m # 0, and clearly

ol{mP", gy = {m, X2 P'g) = 0, s0 for N > Ny Zj_o{mP", g) > 0.

We now have

2'1:’:0<mp"’f>/ Xh-o (mP gy S K + Kz“g”/ Zi-o(mP’ g> - K.

Thus the sequence { X 1 _,o{mP", [} / X h-o(mP", g5} ¥-y, is bounded.

For any subsequence of integers N; we define a linear functional v on Cy(X) by

N
X (ZmPf )
wWf)=LIM e (A Banach limit)

v is a positive finite valued functional, so theorem D of [8, p. 247] applies to give

a Borel measure p such that v(f) = [fdu for fe Cy(X).
If 0 < f e Co(X),then 0 < Pf e C(X), so we can find a sequence {f,} S Co(X)

with 0 < f,1 Pf.
If 0 £ h € Co(X) satisfies h < Pf, then
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N; N;
> (mP" h) 2 {mP" Pf>
n=0

n=0

Ny
§0<mP", 1 m(X)|f]|

= +

A

N; Ny N; Ny
X {mP", g» X {mP, g> X (mP, g> X {mP" g)
n=0 n=0 n=0

n=0

and letting N; — oo v(h) £ v(f), as X5 o(mP", g> = 0.
Hence

P> = | Pfdp = tim f S = im (1) < ) = f f.

If B is a compact set, there is a decreasing sequence {h,} in Cy(X) with h, ] 1,
(by perfect normality).

pP(B) < lim {pP, b,y < lim {g,h,> = u(B).

Hence uP is finite on compact sets, and regular by (1.3}, so uP £ u. By Lemma
5.1 P defines a process in L,(u). But geCy(X) implies geL,(u), and as
X oPrg(x) = oo for every x, every x is in the conservative part of the ad-
joint process P* [6, chapter VII]. But Pand P* on L, (1) have the same conservative
part , so P on L,(u) is conservative, and the subinvariant measure u is invariant
by [6, chapter I1]. Q.E.D.

THEOREM 5.2. Let P be a Markov process on X, such that there is a function
0 < ge Co(X) satisfuing 2 y-oP"g(x) = oo for every xe X. If the invariant
Borel measure u is unique (up to a multiplicative constant), then for every finite

measure m and every fe Co(X) the following limit exists:

. =0
lim 2 =
N-+o N

§0<mP", & u, g

N
X (mP"f> <1

Proor. It is enough to assume f = 0. By the preceding theorem the sequence
{ay} with

N N
ay = Z(mPhfy [ (mPg)

is bounded. If {ay j} converges, we put N; in the preceding theorem, so the limit
equals v(f) (vis defined in the proof of the preceding theorem), which is, as is proved
there, the integral of f with respect to an invariant measure giving mass 1 to g.
Uniqueness of that measure implies that v(f) = {u,f>. Thus ay — {u,f> | 1.8 .

QED
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DEFINITION 5.3. The kernel of a Borel measure u is the complement of the
union of open sets on which u vanishes.
In our topological set-up, we extend theorem 2 of [3].

THEOREM 5.3. The kernel of a subinvariant Borel measure defines a sub-
process.

Proor. Let p be a subinvariant Borel measure (o-finite by (1.3)) and K its
kernel. Define ¥V = K’, which is an open set, and is the union of a sequence of
compact sets (by g-compactness and perfect normality). Let A < V' be a compact
set. We can find an feCy(X), satisfying 0 <1, f(4)=1,/(K(=0.
Since p is subinvariant [Pf dp = [fd(uP)< [fdu=0. (uV)=0 as a
consequence of (1.2) and the definition). Thus Pf =0 a.. Take xeK. If
Pf(x) = a > 0, then {y: Pf(y) > a/2} is an open set with measure 0, so xe V —
a contradiction. Hence for xe K P1,(x) £ Pf(x) = 0. This being true for any
A < V compact, P1,{x) = 0for xe K, or P, < 1,. By definition 3.1 K defines
a subprocess. Q.E.D.

ReMARKS. 1) The condition of Theorem 5.1 seems to be weaker than that
of [4], but here we needed o-compactness for the o-finiteness of the invariant
measure.

2) For the uniqueness requirement of Theorem 5.2, it is clearly necessary that
the subprocess defined by the kernel of the invariant measure be totally ergodic
(cf. S4) (otherwise the restriction of the invariant measure to a subprocess would

define a different invariant measure).

THEOREM 5.4. Let P be a Markov process on X . If for every 0 £ he C(X)
and h#£ 0 27y P" h(x)=00 for every x € X then there exists an invariant Borel
measure p. If it is unique, then for every 0 < f, ge Co(X) and every finite
measure m, the following limit exists:

N
P}!
lim E.o(m S <usf>

N=

N
X mP,g) {ps8)
n=0

Proor. The existence of u follows from Theorem 5.1. The existence of the
limit follows from applying Theorem 5.2 to each 0 < g £ 0 in Cy(X).

REMARKS. 1) In Theorem 5.4 the assumption imply that P is conservative
and totally ergodic (cf. Lemma 4.2).
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2) The existence of an invariant measure under the conditions of theorem
5.4 was proved by Nelson [10, theorem 2.1]. The limit theorem in Theorem 5.4
was proved by Horowirtz [9] under the assumption Piy; = 1 for opensets U # ¢.
His condition implies ours, and we do not know if they are equivalent (see Lemma
4.2 and remarks). However, his proof uses different techniques, which were shown
by Foguel [7, §VI] to yield a result analogous to our Theorem 5.1 and 5.2.

For the uniqueness condition of Theorem 5.4, we can offer only the following

criterion.

DeriNITION 5.4, A Markov process on X is irreducible if the measures A,,
defined on T by 1,(4) = X%_,2-"P*(x,A), are all equivalent,

THEOREM 35.5. If P is an irreducible Markov process on X, such that for
every 0 £ heC(X) and h 0 X 2oP"h = o0, then it has a unique (up to a
multiplicative constant) invariant Borel measure.

Proor. Let u be an invariant measure. P in L,(u) is conservative by Theorem
5.1. The measures 1, are absolutely continuous with respect to u (theorem 8.1 of
[1]) and if 4 is equivalent to all 1, then P defines a process in L, (1), which is
therefore conservative too. By theorem 8.2 of [1] A is necessarily equivalent to u,
and p is unique. (P is also a Harris process, for which uniqueness is proved in
[9, lemma 3.6]). Q.E.D.

ReMARKs. 1) The example in [9] shows that irreducibility is not necessary.

2) The uniqueness assertion of the last theorem may be proved by showing
that for every invariant measure y, P on L (i) is ergodic, as u(4) > 0 = Pi >0=X
is the only invariant set. The uniqueness now follows from the uniqueness of
invariant measures for ergodic processes in L;, by looking at u, and u; + u,
when p, are invariant. (The process is conservative in L, .)

3) Irreducibility is more easily checked than the Harris condition of [9],
as there is no need to know what the invariant measure is.

DEFINITION 5.5. A Markov process on X is strongly conservative if for every
non-empty open set U, X7, P"1,(x) = oo for every x € U. Part (c) of the follow-
ing lemma shows the motivation for this definition in analogy to processes on L, .

LemMma 5.2. If P is a Markov process on X, then the following conditions
are equivalent:
(a) P is strongly conservative.
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(b) For evéry finite measure m, % 5.,mP(U) = co for any open set
U with m(U) > 0.

(c) Forevery finite measure m and openset U, X ".omP*(U) is either 0 or 0.

(d) For any open set U, X>., P"1y(x) is either 0 or .

Proor. (a) = (b): For a finite measure m
N N N
XmP(U)y=( XmP1 =m, P
n=0 (U) < n=0 v > < n=0 v >

and if U is open with m(U) > 0, the right hand-side tends to coas N — co since
the integrand diverges on U, as P is strongly conservative.

(b) = (c): If T2, mP"(U) # 0, then for some k mP*(U) > 0, and apply
(b) to mP".

(c) = (d) by inserting the Dirac measure J, as m.

(d) = (a): For xeU and U # ¢ open, X oP",(x) > 0so by (d)the:sum
is 0. Q.E.D.

ReMaRrks. (1) A strongly conservative process is necessarily conservative,
by Theorem 2.2(d).

(2) A conservative process may fail to be strongly conservative.” Condition (d)
of the last lemma is not satisfied in Example III (7) of [7].

LeMMA 5.3. If pis a subinvariant Borel measure for the strongly conserva-
tive Markov process P, then the process defined in L,(X,X i) is conservative

and u is invariant.

Proor. The proof is similar to the end of the proof of Theorem 5.1 (we in-
clude every point x in a conditionally compact open set U with u(U) > 0 and get
U in the conservative part).

LemMa S5.4: Let P be a strongly conservative Markov process on X, and
let U be a conditionally compact open set. If there exists a finite measure m with
m(U) > 0 such that for every conditionally compact open set A

N
. X mPY(A4)
lmlav_)s:p ne0 <o
N
X mP"(U)
n=0

then there exists an invariant Borel measure ,which does not vanish on U,
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Proor. A functional is defined on Cy(X) as in the proof of Theorem 5.1,
except that 1, replaces g there. The proof is then identical for subinvariance,

ang invariance follows from Lemma 5.3.

CoROLLARY: The same holds if U is replaced by a compact set B.

THEOREM 5.6. If P is a strongly conservative Markov process on X, then
the following condition is necessary and suffiicient for the existence of an in-
variant Borel measure: There exists a compact (or conditionally compact open)

set B and a point y € B, satisfying

N
. z P (y)
hrr]i_'szp We0 <o
N
_ZOP"IB(}’)

for every conditionally compact open set A.

Proor. The condition is sufficient by putting the Dirac measure §, in Lemma
5.4 or the corollary.

Necessity: Let p be an invariant Borel measure. There is a compact (or con-
ditionally compact open) set B with 0 < u(B) < o, so 1ze L(X, X, u). By our
topological assumptions X = UA, with A; conditionally compact open sets.
Using the Chacon-Ornstein theorem [6, chapter 111] for P* on L,(X,Z,pu) we
have the existence a.e.(u) on B of the finite limit

N

lim 2 P'(x,A)

Nl_,w 2 < (xeB).
N
2 P(x,B)

n=0

Therefore we can find a point y € B for which finite limits exist for all 4,’s (the set
of such y’s in B has measure u(B)). If 4 is any conditionally compact open set,
A (and hence A) can be covered by a finite number of 4’s, so the lim sup is
bounded by a finite sum of finite limits. Q.E.D.

It is not known if a conservative totally ergodic process is necessarily strongly
conservative (cf. Lemma 4.2 and remarks). If it is not true then the following
lemma shows that P conservative need not imply invariance of a subinvariant
Borel measure. (Compare with Lemma 5.3.)
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LEMMA 5.5. If P is a totally ergodic Markov process which is not strongly

conservative then P has a subinvariant Borel measure which is not invariant.

ProoF. Since P is not strongly conservative there is a 0 < geC(X), g#0
and X ,P"g(x) < oo for some x e X.

By lemma 2.1 of [10], X 2,P"(x) < oo for every 0 < f € Co(X). Defining
a linear functional on Cy(X) by the sum, it defines a Borel measure p which is
easily seen to be subinvariant, and (Pfdu < X7, PYf(x) < [fdu for0 £ fe Co(X)
is proved in a way similar to the proof in Theorem 5.1. Clearly there is no equality
when f(x) > 0. Q.E.D.

REMARK. This section treated o-finite invariant measures. For the problem
of finite invariant measures we refer to the appendix.

Professor Foguel has suggested to extend the results to the case of a continuous
time process.

DEFINITION 5.6: A continuous-time Markov process is a family {P,:0 <t < o0}
of Markov processes such that the operators {P,} are a strongly continuous semi-
group of operators on C(X) (with P, = I). Some of the properties of a continuous-
time process are described in [7].

THEOREM 5.7: Let {P,} be a continuous-time Markov process. If there exists

a function 0 < g € Co(X) such that for every xeX [Pg(x)dt = co then
there exists a Borel measure p satisfying uP, = p for every t = 0.

Proor. Take 0 £ fe Cy(X). For S >0, fg Pr g dr is continuous, so there
is an S such that [§P, gdr 2 f, as [P, gdr = oo by hypothesis and f has
compact support. Hence 0 < (3 P.fdt < [3( [3PP,gdr)dt = [5( [IP,.,gdt)dr=
[T Pgdndr< [5( fo*Pigdt)dr=S5 [§ Pgdt + S [3*5P,gdt<S 8 Pgdt +
$? [le] -

(The use of Fubini’s theorem is justfied by the fact that the mapping(t, r) — P, ,.g(x),
is continuous on [0,00) x [0,00)). Let m be a finite measure on X. Then

0= (m, [oPfdty £ 8 (m, [{Prgdty + S*|g]| m(X) and since <m, [oP.gdty
s> oasT - o,wehave

. <m5 fgptfdt>
limsup ————M "~

== (m, [TPgdt)

A

S
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Furthermore for fixed r we have

{m, [5 PP.fdt) < Sm [SP.fdry + <m, ffT'Pfdt)

< =
{m, {5 Pgdt) {m, [5 Pgdt)
<m, [§Pfdry + v||f]| m(X)
{m,[g Pgdt)

For any sequence {T} increasing to co, we define a linear functional v on Cy(X)
by a Banach limit:

W(f) = LIM [ m, [3psary } feCy(X).

{m, (37 P,gdt)

v is well-defined as the sequence in the definition of v(f) is bounded, and since v is
positive, there exists a Borel measure u such that vw(f) = [fdu for fe Co(X)
[8, theorem D, p. 247]. By a similar argument to that of the proof of Theorem
5.1, and using the last inequality we have derived, we can conclude that uP, £ u
for every r 2 0.

The function (¢,x) —» P,g(x) is continuous on [0,00) X X, as for any ¢ > 0

|P.g(x) —P.g(»)| < |Pig(x) = Pig(»)| + ||P.g —P.g| < ¢

when y is in an appropriate neighborhood of x (P,g € C(X)) and r close enough
to t.

By Lemma 5.1 each P, defines a Markov process in L(X, X, n), and

{uP,,P,g> = {u,P,P,gy. Define 1P, = d(uP,)/du. We may use Fubini’s theorem
as P,g = 0 is continuous in both variables, so

0= [x(1—1P) [SPgdtdp = [y [(P.gdtdy — [x1P, [(P,gdt du
= [J [xP.gdudt — [§ [x 1P, P,gdudt

fodu, Pigddt — [o<u,P,Pg)dt < [5{u, Pgddt

JoluP,gydt < [dp,gdt < rv(g)=r< o

(all the integrals are finite valued, and bounded by T<{u,g) = T).

Letting T — oo, we conclude (forfixed r) 1 = 1P, a.e. (u),so uP, = p. Q.E.D.

THEOREM 5.8. Let {P,} be a continuous-time Markov process. If for every
0 < heCX)and h# 0 and every x €eX [ Ph(x)dt = o, then there
exists a Borel measure p with puP, = pu for all t 20. If it is unique,
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then for every 0 < f, g € Co(X) and every finite measure m the following limit
exists:

Cm, fipfdy >

lim — =227
= m, [§P,gdt) . 8

Proor. Completely analogous to that of Theorems 5.2, 5.4.

ReMaRk. The methods used in [9] did not extend to comntinuous-time
process.

6. Strong ratio limit thesrems. In Theorem 5.2 and 5.4, we obtained limit
theorems involving the sums of the iterates of a process. In this section we look
for a stronger ratio limit. In both of the following theorems we maintain the con-
ditions of Theorem 5.2.

THEOREM 6.1. Let P be a Markov process on X such that for some
0 £ geCo(X) 2. oP*g(x) = oo forevery x e X , and assume that the invariant
measure p is unique. If m is a finite measure on X satisfying
limsup {mP™, fY[KmP", fy < 1 for every 0 £ fe Co(X) with f£ 0, then for

n—-o

every 0 £ fe Cy(X) and integer v the following limit exists:

lim {mP™", fSKmP", g ={u,f>Kp,gp

n—-ow

Proor. Fix f. As 2,2 ,P"¢ = o0, if 0 £ h € Cy(X), then there exists an
integer J such that X f=0Pfg = h, because h has a compact support. If 6 > 0,

then the condition imposed on m yields(mP"*/,g>/(mP", g} < (14+68) forn 2 N,
and

{mP"h) X(mP" gy J
R N X (X))
mPgy = Tmbrgy = 20T
Thus the sequence {mP",h{/{mP",g> is boundzd for n = N and every h € Cy(X).
Let {n;} be a subsequence such that {mP™,f»/{mP™, g> converges. We define
a positive linear functional on Cy(X) by a Banach limit:

w(h) = LIM {2—%—?: heCy(X).

We apply theorem D of [8,p.247] and get a Borel measure 4 such that v(h) = [hd).
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Fix 0 £ h e Cy(X). For any ¢ > 0, we have hypothesis for n; large enough:

{mP"* LRy (mP" by (mP"*'h) {mP"™,h
= S A +e) —.
{mP",g>  (mP"g) (mP",h) {mP" ,g>
Since 0 £ PheC(X), there is a sequence {h} in Cy(X) with h, 1 Ph. Thus
mP"*' h
fPhd). = lim [hdA = lim v(h) < LIM {<___ >} <

w(h)(1 + &) = (L +¢) [hdA. (mP""',g)

Letting ¢ — 0 we get [Phdl < [hdA for every 0 < h e Cy(X), and 1 is therefore
a subvariant measure, and hence invariant as is proved at the end of the proof

of Theorem 5.1. By the uniqueness of the invariant measure A = au, and as
v(g) = 1, v(h) =<{p,hp[{u,g), and hence

Lm{mP™, 5 KmP",g = v(f) ={p.f) [Kn.g>.

As this is true for every convergent subsequerce, the theorem is proved for r = 0,

We next show that (mP"*,g>/(mP"g> — 1. If {n;} is a subsequence for which
(mP"*, g5 [{mP", g)» converges, we put this subsequence in the definition of v, and
putting h = g in the equality [Phdi = [hdA, we have that

(mP"* \g>(mP™gd - v(g) = 1.

Pn+r Pn+r, r n+i, ,
i TP _ g SPETD L PTG

(mP".g> (mP"™ gy T (mP"T ey (g
and the theorem is proved.

THEOREM 6.2. Let P be a Markov process on X such that there is a function
0 £ geCy(X) satisfying X LoP"g(x) = oo for every xe X, and assume that
the invariant measure u is unique. If m is a finite measure satisfying

n _ Pn+1
lim inf mPfo —<mP P >0 for 0 < feCy(X)

e {mP",g>

then for every fe Co(X) and every integer r the following limit exists:

lim {mP™*",f) KmP",g) = {u,f [{p8>

n—co

Proor. Puiting f = g in the given condition, we obtain lim sup (mP"*!, g/
{mP"g> <1 and since X2 P'g = o implies X ,—,{mP"g) = 0, equality
holds .
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If 0 < h € Co(X), then the sequence {mP", k) [ {(mP", g} is bounded (for n 2 N),
as is proved at the beginning of the preceding theorem.
Fix 0 £ feCy(X). If {n;} is a subsequence for which {mP", f>/{mP™ g)}

converges, we define a positive linear functional on Cy¢(X) by a Banach limit:

(mP", )

{mP"g>
By [8,p.247, theorem D) there exists a Borel measure A satisfying v(h) = [hdA.

Take 0 £ he Co(X). 0 £ Phe C(X) and there exists a sequence {i;} in Co(X)
with O < h, 1 Ph. For any ¢ > 0 the given condition implies that for n > ny(h.¢)
we have (mP"* ' 1> [(mP"g> < {(mP",h) [(mP",g> + ¢ and hence
(PhdA = lim [hdA = limv(h) £ LIM {{mP™*' 1) [(mP",g>} < v(h) + & =

k k
= [hdA + e.

Letting ¢ > 0 we have [PhdA < [hdA for every 0 < h e Co(X), and, as in the
preceding theorem, A is an invariant measure, and therefore a constant multiple

v(h) = LIM{ } heCyX).

of u. As v(g) =1 we have
lim (mP™,f>[{mP",g> = v(f) =<u.f> K18

B0
The end of the proof goes word by word as that of the preceding theorem. Q.E.D.

REMARKS. 1) It is obvious that the condition imposed on m in Theorem
6.2 is necessary.

2) Foguel [7, chapter VII} proved a theorem similar to our Theorem 6.2.
His assumptions are of a local nature and so is his result (concerning continuous
functions supported in a given compact set). Our method of proof is of a global
nature and so are our results but unfortunately so are our conditions (concern-
ing all Cy(X)).

3) Under the assumptions of Theorem 5.4 the condition of Theorem 6.1
becomes lim sup (mP"“,f) KmP"f» =1 0= feCo(X). The theorem can be
applied to each 0 £ ge Co(X), and the condition is necessary, as {u,f> > 0 for
0=feCo(X), f#DO.

4) For an ergodic and conservative chain with n-step transition probabilities

p{” our result is that if (for fixed i) lim sup P VpiP= 1 for every j, then
P Vp™— p fuy for every j,k and r. This is still asking for much more than

Orey’s condition [11].
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7. Combinations of conservative processes. It is well known that the product
of two Markov processes is again a Markov process, and so is a convex linear
combination of two Markov processes. If the two processes are conservative,
what can be said about these new processes? The following examples show they
they are not necessarily conservative, even when the original processes commute.

ExampLE 7.1. A product of strongly conservative processes is not conservative.
Let Z be the set of all integers. We define X = {(x,y,z):x,y,z € Z} with the discrete
topology. We define 3 processes: P — a symmetric random walk parallel to the
x-axis, Q parallel to the y-axis and R parallel to the z-axis. P, Q, R are conservative.
The probability of returning to the origin after 2" steps is a,, = (*%) 27*"in each
of the processes. P,Q, R all commute. We look at P(QR). QR is isometric to the
two dimensional random walk (going to 4 points with probability %), and is con-
servative [2, chapter XIV.7]. By independence, the probability v,, of return to the
origin by PQR after 2" steps is [(3) 27"]>. X ©.o0an < 00, since v5,~T17 325732
by approximation with Stirling’s formula, and thus P(QR) is not conservative.

ExampLE 7.2. 4 convex linear combination of strongly conservative processes
is not conservative. We define X, P, @, R as above, and consider 1R + 2PQ.
This process is isomorphic to the symmetric 3-dimensional random walk, which
is known not to be conservative [2, chapter XIV.7].

REMARKS: 1) In our examples the counting measure was invariant for all
processes.

2) These examples apply also to processes in L;(u) — take for pu the counting
measure. In that case the process is even Harris process [6, chapter V].

Appendix — Existence of a finite invariant measure. This problem will be
treated in [ 7]. We give only the following result.

THEOREM. Let P be a Markov process on X. If A is a compact set, then the
following conditions are equivalent (we assume P1 = 1):

N
(a) lim inf Nl— xp,#0.

N—- o n=1

N
(b) liglsup —]\17 EP”1A$0.

. 13
(©) h:,r_l.iup“ﬁn{:f"l”” > 0.
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(d) There exists a finite invariant measure p with u(4) > 0.
(e) There exists a finite measure m satisfying lim inf mP"(4) > 0.
(f) There exists a finite measure m satisfying

N
lim inf L 2 mP"(4) > 0.
N—=> o Nn=1

(8) There exists a finite measure m satisfying

N
lim sup 1 Y mP'(4) > 0.
N- Nn=1

Proor. (a) = (b) = (c) is obvious.
(c)=>(d) can be deducted from [3]. A more detailed proof will appear in [7, §IV].
(d) = (a) by the ergodic theorem, since

.1 X . . .
lim 5 X Pl ,(x) exists a.e. p and the limit g satisfies fgdu = [1,du = p(4) > 0.
n=1

(d) = (e) with m = p and clearly (e) = (f) = (g)
(g) = (c) since

1y 1 X 1 ¥
Wnzlmpn(A) = <m,W EIP"I"> < m(X) | ¥ El P
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