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ABSTRACT 

A Markov operator preserving C(X) is known to induce a decomposition of the 
locally compact space X to conservative and dissipative parts. Two notions of 
ergodicity are defined and the existence of subprocesses is studied. A sufficient 
condition for the existence of a conservative subprocess is given, and then the 
process is assumed to be conservative. When it has no subprocesses, sufficient 
conditions for the existence of~a a-finite invariant measure are given, and are 
extended to continuous-time processes. When the invariant measure is unique, 
ratiolimit-theorems are proved for the discrete and continuous time processes. 
Examples show that some combinations of conservative processes are not nec- 
essarily conservative. 

1. Definitions and notations. Let X be a locally compact  perfectly normal  

space. We shall use the fol lowing properties of  X :  

(1.l) Every non-negative lower semi-continuous function is the l imit-of an 

increasing sequence o f  non-negative continuous functions. [7,1(2)]. 

(1.2) I f  {V~}~ 1 is a collection o f  open sets, then the open set V = LJ~Iv~ can 

be represented as the union of  a countable  subcollection {V,,}. (Since V = U B, 

with B, closed and a-compact . )  

(1.3) Every Borel set is a Baire set and consequently every Borel measure is 

regular [8, p.228] a-finite (so every finite measure is regular). 

We denote by E the collection o f  all Borel sets, by B(X,Z) the Banach space 

o f  all measurable bounded (real-valued) functions with the sup no rm and by 

C(X) the subspace of  B(X,E) consisting of  cont inuous functions. 

A transition probability on (X,E) is a function 

P: X× Z ~ [ 0 3 ]  
satisfying: 
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(t.4) 
(1.5) 
(1.6) 
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O < P(x,A) <= 1 (x e X,  A e ~ )  

P(x, .) is a measure (countably additive) for each fixed x e X .  

P(. , A) ~ B(X,E) for each fixed A E E . 

A transition probability P induces a positive contraction on B(X, Z),'defined by: 

(1.7) Pf(x) = ff(y)P(x,dy) ( f e  B(X, Y )). 

P also induces a positive contraction on the space of finite signed measures 

M(X,2), defined by: 

(1.8) pP(A) = fP(x,A) I,(dx) (i ~ M(X,Z)). 

We shallfrequently denote .[j@ by <~t.f) ,  and we-have 

(l.9) <ltP,f>;= </J,Pf>(/~ ~ M(X,Z), i t B(X,Z)) .  

In order to relate the transition probability to the topology, we assume 

(1.10) f e  C(X) ~ Pf~ C(X) .  

P will be called a Markov process on X if it satisfied (1.4)-(1.10). 

LEMMA 1.1. Let P be a Markov process on X; then" 

(a) I f { f . }  cB(X,E),satisfies liT, l[ <_ M for all n, and f , , , (x)~f(x)  for every 

x ~ X,  then Pf,,(x) ~ Pf(x) for ever)' x e X .  

(b) I f  in (a) the convergence of f . (x)  is non-decreasing, so is that of Pf,(x) . 

(c) I f  0 <= f 6  B(X,Y~) is lower semi-continuous, so is Pf. 

The proof is simple and will be omitted. 

LEMMA 1.2. l f  P is a Markov process on X, then: 

(a) For ever), 0 <=f ~ B(X,E) there is a minimal function f~o satisfying 

= and f :< Ilfll • 
(b) I f  0 <= f ~  B(X,E) is lower semi-continuous, so is f ~ .  

The proof of (a) is given in chapter Ill  of [6]. (b) follows from the construction 

in [6] and lemma 1.1(c). 

l f A e  E and f =  I a we shall denotef~ by i A. 

LEMMA 1.3. (a) I f  A,~ A ,  then iA, ~ i A . 

(b) I f  0 < f ¢ B(X,Z) satisfies Pf  < f , then the set A = 

{x:f(x) > 0} satisfies PIA < l a .  

(c) For every m ,  pmi a ~ Z ~ '~ n=n,P 1A . 

PPROOF. (a) {ia,} is increasing, so g = lim ia. exists. Pg = P lim ia. = lim Pix, ' 

=< lim ia. = g soPg<= g.g>= sup ia,_>_ l a , s o i a .  ,<= g by minimality. Since 

ia, < ia for every n ,  i a > g. 
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(b) Define A, = {x~(x)  > l / n } .  Then 1/n la, ' < f ,  so ia, <_-- n f ,  so ia,(x ) = 

0 for  x outside A .  Therefore,  for  such x, ia(x) = lira ia,,(x ) = 0 so i a = 1 a . 

oO /1 ¢O /1 (c) By minimality, iA < rain {1, ~:/1=oP l a} ,  so P' ia  < rain {1, • . . . .  P la}. 

Q.E.D. 

LEMMA 1.4. I f  V is an open set and K is closed, then V n K is nowhere 

dense if and only if it does not contain a non-empty open set. 

PROOF. V n K  = 7 n K, and if it contains an open set A ¢ ~b, then 

:~ A n V _ V n K .  The converse is obvious. Note  that  by Baire's theorem a 

non-empty  open set is of  second category, so V n K is either nowhere dense or 

of  second category. 

2. Conservative Markov Processes. 
DEFINITION 2.1. An inessential set is a set A ~ E satisfying lim/1_~oo P"ia(x) = 

0 for every x ~ X .  (Since PiA < ia, {P"i,~} is a decreasing sequence, and the limit 

always exists.) 

DEFINITION 2.2. The dissipative part of the process is the union of  all inessential 

open sets and will be denoted by D.  The conservative part of  the process is the 

complementary  set C = X - D.  The process is conservative if D = ~b. 

The following theorem was proved by Horowitz  [-9, theorem 2 .2] .  

TI-IEOREM 2.1. There exists a representation D = U,~=, D, u N ,  where N is a 

set of first category and each D n is an open set satisfying ~, k~O pklo, ~ B(X,  Z). 

THEOREM 2.2. I f  P is a Markov process on X ,  then the following conditions 

are equivalent: 

(a) P is conservative. 

(b) For every lower semi-continuous 0 <= g ~ B(X,  E )  satisfying Pg <_ g ,  

the set {x: Pg(x) < g(x)} is a set of the first category. 

(c) For every lower semi-continuous 

, , .  o~ p n  ~x ~ 0<= g ~ B(X,  Z ) , the set { x : 0 <  z~/1=o gk ) <  oo } is of the first category. 

(d) For every open set U ~ (o , the set U ~ {x: ]~,~oP/11v(x ) < oo) is of 

the first category. 

(e) I f  0 ~ g ~ B(X,  E )i is lower semi-continuous and P"g ~ O, then g - O. 

PROOF. ( a ) ~ - ( b )  [9, theorem 2.6]. 

(b) ~ (c) [-5, theorem 9 ] .  

(c) :~ (d) is obvious. 
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(d) ~ (a): If D # ~b then there is a non-empty D, in the representation of 

the preceding theorem, since D is open and cannot be the first category. But 

O, ~ { x : 0 <  ~,~=OPklo,(X)< OO} which implies, by (d), that O, is of the 

first category, a contradiction since D, is open and non empty. Hence D = ¢. 

(e) ~ (a) is immediate and (a) --* (e) since {x: g(x) > 0} is open, and by (b) of 

first category hence empty. Q.E.D. 

THEOREM 2.3: The following conditions are equivalent: 

(a) P is conservative. 

(b) pk is conservative for every k .  

(c) pk Iis conservative for some k .  

PROOF. 

(a)-~ (b): Let 0 < g e B(X,E) be a lower semi-continuous function satis- 
fying pkg < g.  

D e f i n e f = ( I  + P + .-- + P~-L)g. T h e n 0  < f  e B ( X , Z )  is lower semi- 

continuous, and f - P f  = g - pkg >= 0.  Since P is conservative, we have by 

Theorem 2.2(b)that {x:Pf(x)  < f(x)} = (x: pkg(x) < g(x)} is of the first category. 

Again by Theorem 2.2, P~ is conservative. 

(b)~(c) is obvious, and (c)~(a)  follows from Theorem 2.2(d), since for every 

open set U 

U ~ {x: ]E,,~=oP"lv(x) < ~}  _~ U n {x: Y~°=o(P~)"lv(x) < ~ }  
Q.E.D. 

REMARK. In the sequel, we give an example that the product of two commut- 

ting conservative Markov processes need not be conservative. 

3. The conservative subpracess. We denote the complement for a set A by A ' .  

LEMMA 3.1. I f  P is a Markov process on X and Y ~ (~ is a closed subset 

satisfyingP l r ,  < l r , ,  then Q: Y X(E o Y) -~ [0,1], defined by Q(y,A)=P(y,A) 

induces a Markov process on Y, and for every f ~ B (Y, E ~ Y) Qf(y) = 

Pg(y) where g is any measurable extension o f f  to X . 

PROOF. Y clearly satisfies all our topological assumptions and Q is obviously 

a transition probability. 

If g is any extension o f f ,  then for y ~ Y (P(y,Y')  = 0): 

Pg(y) = .fg(z)P(y,dz) = ~yf(z)P(y,dz) = Qf(y).  

Q satisfies (1.10): I f f e  C(Y), it can be extended to a gE C(X) (Tietze's theo- 

rem), and Pg is continuous, so Qf is continuous on Y. Q.E.D. 
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DEFINITION 3.1. A closed set Y with P1 r, __< I r '  is said to define a subprocess. 

The subprocess on Y is the above Q. 

LEMMA 3.2. A closed subset Y ~ dp defines a subprocess if  and only if  for  

every g and h in C(X) coinciding on Y ,  Pg = Ph on Y .  

PROOF. The  condit ion is obviously necessary. Y' is open,  and therefore I r, 

is lower semi-continuous,  and by ( l .1)  there is a sequence {f,,} c C(X) with 0 < f ,  < 1 

a n d f ,  1' l r , .  Since f,, = 0 on Y,  P J I , = P O = O  on Y, a n d b y  L e m m a  1.1 for 

y ~ Y  

P 1 r'(Y) = lim Pf,,(y) = 0 

or P I r '  < 1 r ' -  Thus the condit ion is sufficient. 

LEMMA 3.3. I f  (0 ~ A c X ,  there is a minimal  closed subset containing A 

and defining a subprocess. 

PROOF. We define 

F = {Z: A _c Z ,  Z is closed, P I , /  __< lz, ) 

F is not  empty,  since X E  F .  

If Y , Z ~ F ,  t h e n A _ c  y ~ Z ,  and 

P l ( r n z ) '  = P l r , ~ z ,  < P l r , + P I ~ ,  < l r , +  l z , .  

If  x ¢  Y ( ~ Z ,  Pl~rnz) , (x)  = 0,  therefore 

Pl(r~z~r,  < t ( r n z ) , , a n d  hence Y ( ~ Z ~  F .  

Define B = & {Z: Z ~  F ) .  B is closed and contains A.  By (1.2) B can be 

taken as the intersection of  a sequence {Z,,} c F.  As F is closed under  finite in- 

tersections, we may take Z,, decreasing to B.  

PI~,  = lira Plz,  ,, < lira lz,,, = 1i~, 

by L e m m a  1.1, so B s  F ,  and is minimal .  Q.E.D.  

In [5] and [-9] it is proved that  the conservative par t  C of  the process defines 

a subprocess.  (C is closed since D is open).  It  is not known if this subprocess 

is conservative in general,  but it is if C is the closure of  its interior, as a corol lary  

of  the following. 

THEOREM 3.1. Let C be the conservative part of the Markov  process P on X .  

Then there is a decomposition C = Co L2 Cz, where Co is a nowhere dense set 

and C 1 is a closed set containing int C and defining a conservative subprocess. 
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PROOF. I f  C has no interior put Co = C and C1 = qS. Denote by V the in- 

terior of C and assume V ~ ~b. Let C 1 be the minimal closed subset containing 

V and defining a subprocess, which exists by Lemma 3.3, and is contained in C 

by minimality. Co = C - C~ _~ C - V is nowhere dense. It remains to show 

that the subprocess defined by C~ is conservative. We shall prove first that V is 

contained in the conservative part of that subprocess. I f  this is not true then 

there is a relatively open set A ~ C1 with B = A n V ~ q5 and P"i a ~ 0 on C I 

(note that the minimal function on C~ majorizing 1,t and subinvariant with re- 

spect to the subprocess is the restriction of in, defined in Lemma 1.2; this can 

be seen immediately from the construction [6, chapter III]) .  Since A is relatively 

open, A = WchCa with W open, and B = A n V =  V n W C ~ C 1  = V n W  

is open, and satisfies P"i A ~, 0 on C1, and especially P"iB ~ 0 on B. We now use 

a trick of Foguel: define(in X) g = lim P"iB. By Lemma 1.1 Pg = g, and g > 0. 

We got g = 0 on B, so IB < i a - g ,  P ( i ~ - g )  < i B - g  and by the minimality of  

ia, g < 0. Hence g = 0 on X ,  and by definition 2.2 B ~ D, contradicting 

tk ~ B c C1 ~ C.  Therefore V is contained in the conservative part  C 2 of the 

subprocess defined by C 1 . By minimality of CI (C2 also defines a subprocess) 

C1 = C: .  Q.E.D. 

DEFINITION 3.1. The conservative subprocess of a Markov process P is the 

minimal subprocess containing the interior of the conservative part  of P;  it is 

conservative by the previous theorem. 

EXAMPLE 3.1. C t ~ 17 

X = [0, 1] U {2} with the usual topology, P(x,A) = ½(]a(1) + 1~(2)). 

A simple checking shows that C = {1,2}. £ = V = ~ ( 2 } b u t  CI = C since 

½ = Plr,, ~ l v,. 

EXAMPLE 3.2. ~ ~ I 7 = C1 ~ C. 

X = ['0,2] with the usual topology. Define T(x)  = min (xE,x} and Pf(x) = 

f ( T ( x ) ) .  (l /n,  1) is open and inessential, and we can verify that C = {0} L) [1,2]; 

but 17 = C 1 = [1,2], by the next theorem. 

THEOREM 3.2. I f  P is a Markov process on X with the property that 

(x: Pf(x) ~ O} is of the first category whenever (x:  f ( x )  ~ 0} is such a set 

( f  e B(X,  • )), then the conservative subprocess is defined by 17 (the closure of  

the interior of  C). 
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PROOF. We have to show that /7 defines a subprocess, and we shall use 

Lemma3 .2 .  Let g , h ~ C ( X )  with g =  h on V. W e d e f i n e ~  = gl c a n d h  = hlc .  

{x:~(x) ~ h(x)) is contained in C - V, which is of the first category. Hence 

{x:P~(x) ~ Ph(x)) is of the first category. Since g = ~ on C, Pg = P~ on C 

(C defines a subprocess) and Ph = Ph on C. Therefore, (x :Pg(x)  ~ Ph(x)) ~ C 

is of the first category, and cannot contain a non-empty open set by Lemma 1.4 

(open sets ~ ~b are of the second category by Baire's theorem), hence the open 

set (x" Pg(x) ~ Ph(x)} n V = ~b, and therefore {x: Pg(x) ~ Ph(x)) • P = ~b, 

or Pg = Ph on 17. The conclusion follows from Lemma 3.2. Q.E.D. 

THEOREM 3.3. Let P be a conservative Markov process on X .  I f  Y is a closed 

subset defining a subprocess, it can be decomposed as Y = A W B,  where A is 

nowhere dense and B a closed subset containing the interior of Y attd defining a 

conservative subprocess. 

The proof  is completely identical with that of Theorem 3.1, and will not be re- 

peated. 

THEOREM 3.4: Let C be the conservative part of the Markov process on X ,  

then: 
(a) For ever), lower semi-continuous 0 < g~ B(X,  Z )  the set 

{x: 0 < Z P"g(x) < co } ca C 

is of first category. 

(b) For every lower semi-continuous 0 < g~ B ( X , E )  with 

Pg =< g on C, (x: Pg(x) < g(x)} ~ C 

is of the first category. 

PROOF. C = Co U C~ by theorem 3.1: Co is of the first category, and on C~ 

we have a conservative process to which we apply Theorem 2.2, noting that sets 

of first category in Ca are such in X .  Q.E.D. 

4. Existence of subpracesses of a conservative process, 

DEFINITION 4.1. A Markov process on X is ergodic if every non-empty closed 

set defining a subprocess is either equal to X or nowhere dense (has no interior). 

THEOREM 4.1. The following conditions are equivalent: 

(a) P is conservative and ergodic. 

(b) For every 0 <= g~ B ( X , E )  not identically zero lower semi-continuous 

function, (x: E,~=oP"g(x) < oo} is of the first category. 
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(c) For every non-empty open set U, {x: Y.~=oP"lv(x ) < oo) is of the first 

category. 
(d) For every non-empty open set U, {x:Piv(x) < 1} is of the first category. 

(e) For every 0 < ge B(X,E ) lower serni-continuous function satisfying 

Pg < g, {x: Pg(x) < Ilgll} is of the first category. 

PROOF. ( a ) ~ ( b ) :  P is conservative, so {x: 0 <  ~,~=oP"g(x) < ~}  is of the 

first category by Theorem 2.2(c). Define h = rain {1, ~ = o P " g }  then Ph < h. 

A = {x: h(x) > 0} satisfies (Lemma 1.3) PI A < 1 a and is open since h is lower 

semi-continuous as soon as g is. Thus X - A is a closed set defining a subprocess, 

and since A ~_ {x:g(x) > 0} ¢ ~b, X - A  has no interior by ergodicity, and 

(x: ]L,~=oP"g(x) = 0} is also of the first category. 

(b) ~ (c) is immediate. 

(c) ~ (d) P is conservative by Theorem 2.2(d). 

By lemma 2.2 of [9] {x: iv(x) > 0} -- {x: ~,~,=oPqv(x) > 0} and hence (c) 

implies {x: iv(X ) -- 0} is of the first category. {x: 0 < iv(x) < 1} is of the first cate- 

gory for P conservative, by theorem 2.4 of [9]. Hence {x: iv(x) < 1} is of first 

category. (d) follows by Theorem 2.2 (b). 
" l  

( d ) ~ ( e ) :  For g----0 it is true, so assume g ~ 0 .  A, ,=  {x:g(x) > ][g]l-n-} 

is not empty for large enough n. 

g and by minimality in. < g 
l . ,  _< l !gl[-  a/n' = [Igl[- a/n" 

We have therefore 

Pi,4,, < (I}gll - l_)_,pg, and {x:Pg(x) < I}gll _ 1 }  c {x:Pia,(x) < 1} 
n 

so the left-hand set is of first category by (d). Therefore {x: Pg(x) < I[gN} is of the 

first caregory as the union of a sequence of such sets. 

(e) ~ (a): Let Y # X be a closed subset defining a subprocess. 

Set U - - - X -  Y, then P ly  < lv,  so Y =  {x:lv(x) < 1 } c  {x :P lv (x )< l}  

and both are of first category. Hence Y has no interior, and P is ergodic. Using 

Theorem 2.2(b) P is easily seen to be conservative if (e) holds.~ Q.E.D. 

DEFtNmON 4.2. A Markov process on X is totally ergodic if every non-empty 

closed set defining a subprocess is equal to X (there are no subprocesses). 

LEMMA 4.1. The following conditions are equivalent: 

(a) P is totally ergodic. 
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(b) For every non-empty open set U, {x:iv(x ) > 0} = X .  

(c) For every 0 <= f ~ C(X) ,  i f  f ~ 0 then ]~=oP '~(x)  > O for  every x in X .  

PROOF. By lemma 2.2 of [9], {X:iv(X ) > 0} = {x: Z,:°=oP"lv(x) > 0}. If U ~ q5 

is open, there is a non-zero f e  C(X) satisfying 0 < f < lv ,  and hence (c) ~ (b). 

If 0 < f e  C(X) a n d f ~  0, U = {x:f(x) > a} is not empty for some a > 0, and 

a l v = f ,  so ( b ) ~ ( c ) .  

( a ) ~ ( b ) :  Let U #  qhbeopen ,  andse t  V = { x : i u ( x ) > 0 } .  V is open and 

by Lemma 1.3 P1 v < l v ,  so V' ¢ X defines a subprocess, hence V' = ¢ .  

(b) ~ ( a ) :  If Y is a closed set defining a subprocess, Ply, ,  < l r , ,  or 1 r, = it, 

and by (b) Y' is q~ or X ; so P is totally ergodic. Q.ED 

LEMMA 4.2. In the following conditions, (a) ~ (b) ~ (c). 

(a) For every non-empty open set U, Pi o - 1. 

(b) For every non-empty open set U,  ~n~oP"l  v -- oo. 

(c) P is conservative and totally ergodic. 

PROOF. (a) =~ (b): The condition also implies i v = 1 and P1 = 1. Thus we 

have (by Lemma 1.3) 

1 Pmiv(x) < E ~ " ( x 6  X)  = ,=m P Iv(x) 

for every m, so the series diverges. 

(b) ~ (c): P is conservative by Theorem 2.2(d) and totally ergodic by the pre- 

vious Lemma, since 

{x: iv(x ) > 0 }  = {x: 2~=oP"lv(x  ) > 0 }  = X  

REMARKS. 

1) If P is induced by a point transformation, i v is always 0 or 1, so (c) ~ PI = 

l , iv ~ O ~ Pi v -  l : ~ ( a ) .  

2) If there are no sets of first category (e.g. X countable with discrete topology, 

(c) ~ (a). 

3) S. Horowitz has shown the author a probabilistic proof that if X is compact 

then (c) ~ (a).  
4) It is not known if always (c) ~ (b) or (b) =~ (a). 

5. Invariant (~-finite) measures and ratio limits 

DEFINITION 5.1. If p is a Borel measure (positive, and finite on compact set 

a-finite by a-compactness of X),  we define #P by means of (1.8). The measure p 

is subinvariant if/~P < I~, and invariant if equality holds. 
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For Markov processes defined on Lx(X , Z ,p) our reference is [63 . 

LEMMA 5.1: I f  P is a Markov process on X and Ix is a subvariant Borel meas- 

ure, then P defines a Markov process on L t (X  , Y, ,It). 

PROOf. LI(X, Z ,IX) can be identified with a closed subspace of M(X,  Z ), and 

we have only to show that it is invariant under P.  If 0 < m is a measure weaker 

than Ix, then Ix(A) = 0 implies < ~u, P1A ) = IxP(A) = O, henceIx{x:Pla(x ) > O} 

so m{x:PIA(X) > O} = 0 and raP(A) = _ < m , P l a ) =  O. Q.E.D. 

DEFINITION 5.2: We denote by Co(X) the linear manifold in C(X) of continuous 

functions with compact support. 

TrtEORE~ 5.1. Let P be a Markov process on X .  I f  there is a function 

0 < g ~ Co(X)sat is fying ~ o  p .  ~ , = z.,.=0 gtx) = oo foreveryx~  X ,  then thereexists 

an invariant Borel measure. 

PROOF. Take any 0 < f e C  o(X) .  Since f has a compact support and 

.=o P g = oo there is an integer K such that ]E~=IP ~ > f ,  and hence for 

every integer N ~ = o P " f <  N ~K ,,.+k n ~ . = 0  P"g < K + s<: llgll. L, k = l i "  g = 

We now take a finite measure m # 0, and clearly 

~]~=o<mP", g)  = (m,  ]~,~0P"g) = oo, so for N > No ZN,=o(mP n, g> > O. 

We now have 

N , / N / . 
~],=o g)  ~ + K:llgll ~n=0<mP g> ~ g .  Z .  : o ( m P  , f )  (raP", < 

Thus the sequence { E N.=.o(mP",f > I ]~=o (mU ' ,  g)} ~°=So is bounded. 

For any subsequence of integers Nj we define a linear functional v on Co(X) by 

< ~,mP",f  > 
n = O  

Nf 

Z <raP", g> 
n = O  

v(f)  = L I M (A Banach limit) 

v is a positive finite valued functional, so theorem D of [8, p. 247] applies to give 

a Borel measure # such that v(f) = ffd# for fe .Co(X) .  

If  0 < f ~ Co(X), then 0 < P f  ~ C(X) ,  so we can find a sequence {f.} ___ Co(X) 

with 0 < f .  ~ P f .  

If  0 < h ~ Co(X) satisfies h < P f ,  then 
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N/ N~ N t 

<raP", h> ~ <raP", Pf> ~, <mP", f> m(X)llfll 
n=O < n=O < .=0 

_____ = n u 

Nj N j  N j N j  

<mP", g> Y_, QnP", g> Y~ <mP", g> X <raP", g> 
n = 0  n = O  n = O  n = O  

= .=o<mP,g> = ~ .  and letting N~ ~ m v(h) < v(f), as ]~ ~ 
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PROOF. 

{aN} with 
N N 

as = Z <mP",f> / ]~ <mP",g> 
n = O  n = O  

is bounded. If {aN j} converges, we put N~ in the preceding theorem, so the limit 

equals v(f) (v is defined in the proof of the preceding theorem), which is, as is proved 

there, the integral of f with respect to an invariant measure giving mass 1 to g. 

Uniqueness of that measure implies that v0 r) = </~,f). Thus a s ~ </~,J) / </~,g). 

Q.E.D 

Hence 

<#P,f> = f Pfd# = lim f f ,  dl~ = lim v(fn) < v(f) = f frill. 

If B is a compact set, there is a decreasing sequence {h,} in Co(X) with h, ~, I n 

(by perfect normality). 

ttP(B) < lim </~P, h,> < lim <tt,h,> = I~(B). 
. n 

Hence/zP is finite on compact sets, and regular by (1.3), so/~P < / t .  By Lemma 

5.1 P defines a process in L,(#) .  But geCo(X) implies geLl(l~),  and as 

]~ ~,=oP"g(x) = oo for every x,  every x is in the conservative part of the ad- 

joint process P* [-6, chapter VIII. But Pand P* on L, (/0 have the same conservative 

pa r t ,  so P on Lx(/l ) is conservative, and the subinvariant measure/t  is invariant 

by [6, chapter II-I. Q.E.D. 

THEOREM 5.2. Let P be a Markov process on X ,  such that there is a function 

0 ~ geCo(X) satisj'uing Y~°=oP"g(x ) = 0o for every x e X .  I f  the invariant 

Borel measure it is unique (up to a multiplicative constant), then for every finite 

measure m and every f eCo(X)  the following limit exists: 
17 

£ <mP",f> <#,f> 
lira .=o 
N-+m N 

£ (me", g> <¢, g> 
n = 0  

It is enough to assume f > 0. By the preceding theorem the sequence 
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DEFINITION 5.3. The kernel of a Borel measure It is the complement of the 

union of open sets on which # vanishes. 

In our topological set-up, we extend theorem 2 of [3]. 

THEOREM 5.3. The kernel of a subinvariant Borel measure defines a sub- 

process. 

PROOF. Let It be a subinvariant Borel measure (a-finite by (1.3))and K its 

kernel. Define V = K ' ,  which is an open set, and is the union of a sequence of 

compact  sets (by a-compactness and perfect normality). Let A ~ V be a compact  

set. We can find an f E C o ( X ) ,  satisfying 0 < f <  1, f (A)  = 1 , f ( K (  = 0. 

Since it is subinvariant fP f  dlt = ffd(itP)<= f f d i t  = 0. ( /~(V)=0 as a 

consequence of (1.2) and the definition). Thus P f =  0 a.e. Take x ~ K .  I f  

Pf(x) = a > 0, then {y: Pf(y) > a/2} is an open set with measure 0, so x e  V - -  

a contradiction. Hence for x ~ K Pla(x  ) < Pf(x) = 0. This being true for any 

A ~_ V compact ,  Ply(x)  = 0 for x e K ,  or P1 v < 1 v. By definition 3.1 K defines 

a subprocess. Q.E.D. 

REMARKS. 1) The condition of Theorem 5.1 seems to be weaker than that 

of [4], but here we needed a-compactness for the a-finiteness of the invariant 

measure. 

2) For the uniqueness requirement of Theorem 5.2, it is clearly necessary that 

the subprocess defined by the kernel of the invariant measure be totally ergodic 

(cf. $4) (otherwise the restriction of the invariant measure to a subprocess would 

define a different invariant measure). 

THEOREM 5.4. Let P be a Markov process on X .  I f  for every 0 < h ~ C(X) 

and h ~ 0 Y~ ,~°= o P" h(x) = ~ for every x ~ X then there exists an invariant Borel 

measure It. I f  it is unique, then for every 0 < f ,  g~Co(X)  and every finite 

measure m,  the following limit exists: 

N 

~, < m P ' , f >  < I t , f>  
lim ~=o 

N--~ ¢o 
N 

2 <  , n W , g >  ( i t , g >  
n = 0  

PROOF. The existence of It follows from Theorem 5.1. The existence of the 

limit follows from applying Theorem 5.2 to each 0 < g ~ 0 in Co(X). 

REM~ICS. 1) In Theorem 5.4 the assumption imply that P is conservative 

and totally ergodic (cf. Lemma 4.2). 
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2) The existence of an invariant measure under the conditions of theorem 

5.4 was proved by Nelson [10, theorem 2.1]. The limit theorem in Theorem 5.4 

was proved by Horowirtz [9] under the assumption Ply - 1 for open sets U y~ qS. 

His condition implies ours, and we do not know if they are equivalent (see Lemma 

4.2 and remarks). However, his proof uses different techniques, which were shown 

by Foguel [7, §VII to yield a result analogous to our Theorem 5.1 and 5.2. 

For the uniqueness condition of Theorem 5.4, we can offer only the following 

criterion. 

DEFINITION 5.4. A Markov process on X is irreducible if the measures 2x, 

defined on E by ).x(A) = Y~=I 2-"P"(x ,A) ,  are all equivalent. 

THEOREM 5.5. I f  P is an irreducible Markov process on X ,  such that for  

every 0 < h ~ C ( X )  and h ~ 0 ~,~=oP"h = ~ ,  then it has a unique (up to a 

multiplicative constant) invariant Borel measure. 

PROOF. Let/~ be an invariant measure. P in LI(~) is conservative by Theorem 

5.1. The measures 2~ are absolutely continuous with respect to/~ (theorem 8.1 of 

[1]) and if 2 is equivalent to all 2x, then P defines a process in L~ (2), which is 

therefore conservative too. By theorem 8.2 of [ i ]  2 is necessarily equivalent to/~, 

and p is unique. (P is also a Harris process, for which uniqueness is proved in 

[9, lemma 3.6]). Q.E.D. 

REMARKS. 1) The example in [9] shows that irreducibility is not necessary. 

2) The uniqueness assertion of the last theorem may be proved by showing 

that for every invariant measure #,  P on LI(#) is ergodic, as/~(A) > 0 ~ Pi a > 0 :~X 

is the only invariant set. The uniqueness now follows from the uniqueness of 

invariant measures for ergodic processes in La,  by looking at /q and /q +/~2 

when #, are invariant. (The process is conservative in L 1 .) 

3) Irreducibility is more easily checked than the Harris condition of [9], 

as there is no need to know what the invariant measure is. 

DEFtNmON 5.5. A Markovprocess on X is strongly conservative if for every 

non-empty open set U, ]~ ~--o P"lv(x) = ~ for every x ~ U. Part (c) of the follow- 

ing lemma shows the motivation for this definition in analogy to processes on Lx. 

LEM~A 5.2. I f  P is a Markov process on X ,  then the fol lowing conditions 

are equivalent: 

(a) P is strongly conservative. 
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(b) For every finite measure m, E~=omPn(U)=  oo for any o'pen set 

U with re(U) > O. 

(c) For every finite measure m and open set U, ~ ~=omPn(U) is either 0 or oo. 

(d) For any open set U, ~ = o  Pnlv(x) is either 0 or oo. 

PROOF. ( a ) ~  (b): For a finite measure m 

N N N 

~, mPn(U) = < ~ mPn, lv > = < m, ]E Pnl v > 
n = 0  n=O n = 0  

and if U is open with m(U) > 0, the right hand-side tends to oo as N ~ oo since 

the integrand diverges on U,  as P is strongly conservative. 

(b) ~ (c): If ~ = o m P n ( U ) ~  O, then for some k mPk(U)> 0, and apply 

(b) to mP k. 

(c) =~ (d) by inserting the Dirac measure 5x as m. 

(d) =~ (a): For x E U  and U # q~ open, ~ = o P ' l v ( x )  > 0so  by (d) the'sum 

is oo. Q.E.D. 

REMARKS. (1) A strongly conservative process is necessarily COnservative, 

by Theorem 2.2(d). 

(2) A conservative process may fail to be  strongly conservative. Condition (d) 

of the last lemma is not Satisfied in Example III (7) of [7]. 

LEMMA 5.3. I f  g is a subinvariant Borel measure for the strongly conserva- 

tive Markov process P,  then the process defined in LI(X,,E ,it) is Conservative 

and It is tnvariant. 

PROOF. The proof is similar to the end of the proof of Theorem 5.1 (we in- 

clude every point x in a conditionally compact open set U with It(U) > 0 and get 

U in the conservative part). 

LEMMA 5.4: Let P be a strongly conservative Markov process on :X, and 

let U be a conditionally compact open set. I f  there exists a finite measure m with 

re(U) > 0 such that for every conditionally compact open set A 

N 

Z toP'(A) 
lim sup n=o 

N~oo < O0 
N 

Z mP~(U) 
n=O  

then there exists an invariant Borel measure ,which does not vanish on O. 
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PROOF. A functional is defined on Co(X) as in the proof of Theorem 5.1, 

except that lv replaces g there. The proof is then identical for subinvariance, 

ana invariance follows from Lemma 5.3. 

COROLLARY: The same holds if  U is replaced by a compact set B .  

THEOREM 5.6. I f  P is a strongly conservative Markov process on X ,  then 

the following condition is necessary and suffiicient for the existence of an in- 

variant Borel measure: There exists a compact (or conditionally compact open) 

set B and a point y e B,  satisfying 

N 

]~ P"la(y) 
lira sup .=o 

N-,QO < O0 
N 

Z P"ln(y) 
n=O 

for every conditionally compact open set A .  

PROOF. The condition is sufficient by putting the Dirac measure 5y in Lemma 

5.4 or the corollary. 

Necessity: Let # be an invariant Borel measure. There is a compact (or con- 

ditionally compact open) set B with 0 < #(B) < oo, so In e L(X,  Z,  #). By our 

topological assumptions X = UA~ with As conditionally compact open sets. 

Using the Chacon-Ornstein theorem [6, chapter III] for P* on LI(X , Z , / 0  we 

have the existence a.e.(#) on B of the finite limit 

N 

Z P"(x,A,) 
lira . =o 
N-~ < ~ ( x ~ B ) .  

N 

~, W(x,B) 
n=O  

Therefore we can find a point y e B for which finite limits exist for all A t's (the set 

of such y's in B has measure #(B)). If  A is any conditionally compact open set, 

~ / (and hence A) can be covered by a finite number of At's, so the lira sup is 

bounded by a finite sum of finite limits. Q.E.D. 

It is not known if a conservative totally ergodic process is necessarily strongly 

conservative (cf. Lemma 4.2 and remarks). If  it is not true then the following 

lemma shows that P conservative need not imply invariance of a subinvariant 

Borel measure. (Compare with Lemma 5.3.) 
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LEMMA 5.5. I f  P is a totally ergodic Markov process which is not strongly 

conservative then P has a subinvariant Borel measure which is not invariant. 

PROOF. Since P is not strongly conservative there is a 0 < g e  C(X),  g 7~ 0 

and ~,~=oP"g(x) < ~ for some x ~  X. 

By lemma 2.1 of [10], ]~ ~=oP"f(x) < oo for every 0 < f ~ Co(X). Defining 

a linear functional on C0(X) by the sum, it defines a Borel measure # which is 

easily seen to be subinvariant, and fPfd# < ]~,~1 P"f(x) < ffd# for 0 < f e Co(X) 

is proved in a way similar to the proof  in Theorem 5.1. Clearly there is no equality 

when f ( x )  > 0. Q.E.D. 

REMARK. This section treated o--finite invariant measures. For  the problem 

of finite invariant measures we refer to the appendix. 

Professor Foguel has suggested to extend the results to the case of a continuous 

time process. 

DEFINITION 5.6: A continuous-time Markov process is a family {Pt:0 < t < oo} 

of Markov processes such that the operators {Pt} are a strongly continuous semi- 

group of operators on C(X) (with P0 = I ) .  Some of the properties of  a continuous- 

time process are described in I-7]. 

THEOREM 5.7: Let {Pt} be a continuous-time Markov process. I f  there exists 

a function 0 < g ~ Co(X) such that for every x s X  f~'Ptg(x)dt = ~ then 

there exists a BoreI measure # satisfying #Pt = # f o r  every t > O. 

PROOF. Take 0 < f ~ Co(X). For S > 0, fSoPr g dr is continuous, so there 

is an S such that .foSPr g dr > f ,  as fo~Pr g dr = ~ by hypothesis and f has 

compact  support. Hence 0 < fro Pff dt < f f (  fSoPtPrgdr)dt = f s (  fropt+,gdt)dr= 

.[s(sf+~Ptg dt)dr< foS( f r+Sptgdt)dr=S fT ptgdt + S frT+Sp, g d t < S  f r  o Ptgdt + 
s2 Ilgll 

(The use of  Fubini 's theorem is j UNtried by the fact that the mapping (t, r) ~ Pt +,g(x), 

is continuous on [0,oo) × [0,oo)). Let m be a finite measure on X. Then 

0 < <m, f T p t f d t  > < S <m, fTptg dt> + S 2 I]g[l re(X) and since <m, frPtgdt ) 

oo as T ~ oo, we have 

<m, f dt) 
lira sup < S 

T--, ~ ( m ,  f r  p tgd t )  
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Furthermore for fixed r we have 

fr  Ptfdt> <m, froPtPffdt > <m, f rp t fd t  > + <m, r+~ 
< 

<m, fTptgdt> <m, fT ptgdt> 

< 

(m, ffo P,f dt> + 4fll re<x) 

<m,f~ Ptgdt> 

181 

For any sequence {T j} increasing to oe, we define a linear functional v on Co(X) 
by a Banach limit: 

(" <m, forJptfdt> 
v(f) = LIM .~ f e Co(X). J L (m, fro~ Ptgdt> 

v is well-defined as the sequence in the definition of v(f) is bounded, and since v is 

positive, there exists a Borel measure # such that v( f )= ffd# for f e  Co(X) 

[8, theorem D, p. 247]. By a similar argument to that of the proof  of Theorem 

5.1, and using the last inequality we have derived, we can conclude that/~Pr </ , t  

for every r > 0. 

The function (t,x) ~ Pig(x) is continuous on [0,oo) x X ,  as for any e > 0 

IPtg(x) -Prg(Y)] < IPtg(x) -Ptg(Y)] +IlP, g -PrgH < e 

when y is in an appropriate neighborhood of x (Pig e C(X)) and r close enough 

t o  t .  

By Lemma 5.1 each P, defines a Markov process in LI(X , Z,  #) ,  and 

<#Pr, Ptg>= @,PrPtg> • Define 1Pr = d(lzP,)/dl a . We may use Fubini 's  theorem 

as Ptg> 0 is continuous in both variables, so 

0 =< fx(1 - 1P,) fSptg dt d# = fx fTptgdt d# -- fx lP,  foP, d# 

fr  o fxptgd#dt r = - fo f x  1 P ; P , g @ a t  

= ~ff<#, Pig> dt - fT@, P, Ptg> d t <  f; <,, Pig) dt 

f < >d .[~(. >d (g) = "o #Pt, g t <  o ,g  t =< r v  = r < oo 

(all the integrals are finite valued, and bounded by T<#, g> = T) .  

Letting T ~ ~ ,  we conclude (for fixed r) 1 = 1P, a.e. (#), so lap r = ~.  Q.E.D. 

THEOREM 5.8. Let {Pt} be a continuous-time Markov process. I f  for every 

0 < h e C(X) and h ~  0 and every x e X  f~ Pth(x)dt = co, then there 

exists a Borel measure it with 11P t = # for all t > O. I f  it is unique, 
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then for every 0 ~ f ,  g e Co(X) and every finite measure m the following limit 

exists: 

lim< m, yroPtfdt> _ <~t,f> 

T ~ oo< m, fTptgdt > <It, g> 

PROOF. Completely analogous to that of Theorems 5.2, 5.4. 

REMARK. The methods used in 1-9] did not extend to comntinuous-time 

process. 

6. Strong ratio limit theorems. In Theorem 5.2 and 5.4, we obtained limit 

theorems involving the sums of the iterates of a process. In this section we look 

for a stronger ratio limit. In both of the following theorems we maintain the con- 

ditions of Theorem 5.2. 

THEOREM6.1. Let P be a Markov process on X such that for some 

0 < g~  Co(X) ~,~=oP"g(x) = ooforevery x ~ X  , and assume that the invariant 

measure # is unique. I f  m is a f inite measure on X satisfying 

lim sup (raP "+1, f>/<mP", f> <= 1 for every 0 < f e Co(X) with f ~ O, then for 
n .--~ o o  

every 0 < f ~ Co(X) and integer r the following limit exists: 

lim ( m P  "+" , f ) / (mP",  g) = (lt,.f)/(p,g> 
n -.-~ ¢o 

PROOF. Fix f .  As ]E~=oP"g = m ,  if 0 < h eCo(X) ,  then there exists an 

integer J such that Z ]=oPJg > h, because h has a compact support. If  6 > 0 ,  

then the condition imposed on m yields(mP"+J,g>/<mP ", g) < (1 +6)  j for n > N ,  
and 

d 
<mP",h> Z<mU'+J,g> s 

j=O ~ Z (1 "[- ~). 
(toP',g> <me",g> j = 0 

Thus the sequence <mP",h(/(mP",g> is bounded for n > N and every h e Co(X). 

Let {ni} be a subsequence such that <mP"',f>/<mP"', g> converges. We define 

a positive linear functional on Co(X) by a Banach limit: 

h>} 
v(h) = L I M (mP' , ,  g h e Co(X). 

We apply theorem D of ['8, p.247] and get a Bore1 measure 2 such that v(h) = fhd2. 
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Fix 0 < h e Co(X). For  any e > 0,  we have hypothesis for n~ large enough: 

(mP"'+~,h} (mP"',h} (mP"'+',h} (mP"',h) 
- = ( 1  + e )  

(mP"',g} (mpn',g) (mP"',h) (mP n' ,g} 

Since 0 < P h e C(X), there is a sequence {hk} in Co(X) with hk ~ Ph. Thus 

fPhd2 = lim fhkd2 = limv(hk) < L I  M I (--mP"'÷"h}l < 

k k = ~ (mp,+t,g)) 
v(h)(1 + e) = (1 + e) fhd2. 

Letting ~ ~ 0 we get fPhd2 < fhd2 for every 0 < h e Co(X), and 2 is therefore 

a subvariant measure, and hence invariant as is proved at the end of the proof  

of Theorem 5.1. By the uniqueness of the invariant measure 2 = ~It, and as 

v(g) = 1, v(h) = (it,h}/(p,g), and hence 

lim (mP"',f> /(mP~,g} = v(f) = ( i t , f > / ( i t , g } .  

As this is true for every convergent subsequence, the theorem is proved for r = O. 

We next show that (mP"+l,g}/(mP",g} ~ 1. I f  {ni} is a subsequence for which 

(raP "l+ ~,g}/(mtYn,g} converges, we put this subsequence in the definition of v, and 

putting h = g in the equality f Phd2 = fhd)., we have that 

(raP "~+ ',g>/<mP'~,g} ~ v(g) = t .  

(mP'+~,f} (mP"+',f} " (raP .+i,g} (l~,f) 
l im-  . = lim - - - -  I-I - 

(mP",g) (mP"+',g) '=' (mP"+i-l,g) (It,g) 

and the theorem is proved. 

THEOREM 6.2. Let P be a Markov process on X such that there is a function 

0 < geCo(X) satisfying ~=oPng(x )= co for every x ~ X ,  and assume that 

the invariant measure I1 is unique. I f  m is a finite measure satisfying 

(roW, f )  - (raP ~+ 1,f) 
lim inf => 0 for 0 <= f ~  Co(X) 

,-.o~ (mpn, g) 

then for every f e Co(X) and every integer r the following limit exists: 

lira (mP"+',f) /(mPn, g) = (# , f )  ~(it,g) 
I t  " *  O0 

PROOF. Putting f = g in the given condition, we obtain lira sup (mP"+l,g)] 

(mP",g) __< 1 and since ]~=oP"g-  ~ implies ~,.~=o(mP",g) = oo, equality 

holds .  
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If 0 <= h e Co(X), then the sequence {raP", h) / ( raP ", g)} is bounded (for n > N) ,  

as is proved at the beginning of the preceding theorem. 

Fix 0 =< I s  Co(X). If  {hi} is a subsequence for which {mP"',f)/(mP"'g)} 

converges, we define a positive linear functional on Co(X) by a Banach limit: 

v(h) = L I  M h e Co(X). 
(mP"'g> 

By [8,p.247, theorem D) there exists a Borel measure 2 satisfying v(h) = fhd2. 

Take 0 <= h ~ Co(X). 0 <= Ph ~ C(X) and there exists a sequence {hk} in Co(X ) 

with 0 < h, ~ Ph. For any e > 0 the given condition implies that for n >= no(h.e) 

we have (mpn+l,h> /(mPn,g) < (mPn, h) /(mP",g) + e and hence 

.fPhd2 = lim .fhkd2 = lim v(h~,) < LIM {(mP"'+',h)/(mP"',g)} < v(h) + e = 
k k 

= fhd2 + e. 

Letting e ~ 0 we have SPhd2 < Shd,t for every 0 < h ~ Co(X), and, as in the 

preceding theorem, 2 is an invariant measure, and therefore a constant multiple 

o f p .  Asv(g)  = 1 we have 

lim (rnP"' " , f ) / (mP ,g) = v(f) = @ , f )  /@,g).  
~ i -.* oo 

The end of the proof  goes word by word as that of the preceding theorem. Q.E.D. 

REMARnS. 1) It is obvious that the condition imposed on m in Theorem 

6.2 is necessary. 

2) Foguel [7, chapter VIII proved a theorem similar to our Theorem 6.2. 

His assumptions are of a local nature and so is his result (concerning continuous 

functions supported in a given compact set). Our method of proof is of a global 

nature and so are our re sults but unfortunately so are our conditions (concern- 

ing all Co(X)). 

3) Under the assumptions of Theorem 5.4 the condition of Theorem 6.1 

becomes lira sup (mP"+l , f ) / (mP' , f )  = 10<=fe  Co(X). The theorem can be 

applied to each 0 <= g E Co(X), and the condition is necessary, as (p,~) > 0 for 

0 < f e C o ( X ) ,  f ~  O. 
4) For  an ergodic and conservative chain with n-step transition probabilities 

p (n) _ (n+ 1 ) t _  (n) ~j our result is that if (for fixed i) lim sup e~j /eij = 1 for every j ,  then 

p~]+l)/pi~"~ t~Jl2k for every j ,k and r .  This is still asking for much more than 

Orey's condition [11]. 
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7. Combinations of conservative processes. It is well known that the product 

of two Markov processes is again a Markov process, and so is a convex linear 

combination of two Markov processes. If the two processes are conservative, 

what can be said about these new processes? The following examples show they 

they are not necessarily conservative, even when the original processes commute. 

EXAMPLE 7.1. A product of strongly conservative processes is not conservative. 

Let Z be the set of all integers. We define X = {(x,y,z):x,y,z e Z} with the discrete 

topology. We define 3 processes: P - a symmetric random walk parallel to the 

x-axis, Q parallel to the y-axis and R parallel to the z-axis. P, Q, R are conservative. 

The probability of returning to the origin after 2" steps is a2, = (2..) 2-2, in each 

of the processes. P, Q, R all commute. We look at P(QR). QR is isometric to the 

two dimensional random walk (going to 4 points with probability ¼), and is con- 

servative [2, chapter XIV.7]. By independence, the probability v2, of return to the 

origin byPQR after 2" steps is [(22,) 2-2n]3. ~ ,~o02n < ~ ,  since 1 ) 2 . ~ - 1 - 3 / 2 n  -312 

by approximation with Stirling's formula, and thus P(QR) is not conservative. 

EXAMPLE 7.2. A convex linear combination of strongly conservative processes 

is not conservative. We define X, P, Q, R as above, and consider JR + zpQ. 

This process is isomorphic to the symmetric 3-dimensional random walk, which 

is known not to be conservative [2, chapter XIV.7]. 

REMARKS: 1) In our examples the counting measure was invariant for all 

processes. 

2) These examples apply also to processes in LI(~)-- take for # the counting 

measure. In that case the process is even Harris process [6, chapter V]. 

A p p e n d i x -  Existence of a finite invariant measure. This problem will be 

treated in [7]. We give only the following result. 

THEOREM. Let P be a Markov process on X .  If  A is a compact set, then the 

following conditions are equivalent (we assume P1 = 1): 

1 N 
(a) lira inf -~- ~ P"la ~ 0. 

N"*oo z,  n=l  

1 N 
(b) limN~o~sup ~ , ~  pnl A V~ O. 

(c) lims_~ ~P  ]~ P"IA > 0. 
n=l 
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(d) There  exists a f in i te  invariant  measure It with #(A)  > 0 .  

(e) There exists a finite measure m satisfying lim inf mP~(A) > O. 

(f) There exists a finite measure m satisfying 

1 N 
lim inf -~ E mP"(A) > O. 

N ~  oo n = l  

(g) There exists  a f ini te  measure m sat is fying 
1 s 

limsup - -  ~ m P " ( A ) > O .  
N~co g n = l  

PROOF. (a) =~ (b) =~ (c) is obvious. 

(c)=>(d) can be deducted from [3].  A more detailed proof  will  appear in [7, §IV]. 

(d) =~ (a) by the ergodic theorem, since 

1 ~v 
lim -~ • Pnla(x ) exists a.e. # and the limit g satisfies fgdl  t = j'lad# = p(A) > 0 .  

n = l  

(d) => (e) with m = # and clearly (e) ~ (f) =~ (g) 

(g) =~ (c) since 

N N 1 N 

N n = l  n= rl= 
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